Earth’s atmosphere stretches Moon Earth Troposphere planet
Earth Atmosphere
For upon |Earth’s atmosphere stretches from the surface of the planet up to as far as 10,000 kilometers (6,214 miles) above. After that, the atmosphere blends into space. Not all scientists agree on where the actual upper boundary of the atmosphere is, but they can agree that the bulk of the atmosphere is located close to Earth’s surface—up to a distance of around eight to 15 kilometers (five to nine miles).
Moon Earth Troposphere
Silver-blue noctilucent clouds are shown extending far above the orange-colored troposphere, the lowest and densest part of Earth’s atmosphere.
Look up. Way up. The clouds you see in the sky, the wind that is moving the trees or the flag in your schoolyard, even the sunshine you feel on your face—these are all a result of Earth’s atmosphere.
Earth’s atmosphere is so much more than the air we breathe. A trip from the surface of Earth to outer space would result in passing through five different layers, each with very different characteristics.
Earth’s atmosphere stretches from the surface of the planet up to as far as 10,000 kilometers (6,214 miles) above. After that, the atmosphere blends into space. Not all scientists agree on where the actual upper boundary of the atmosphere is, but they can agree that the bulk of the atmosphere is located close to Earth’s surface—up to a distance of around eight to 15 kilometers (five to nine miles).
While oxygen is necessary for most life on Earth, the majority of Earth’s atmosphere is not oxygen. Earth’s atmosphere is composed of about 78 percent nitrogen, 21 percent oxygen, 0.9 percent argon, and 0.1 percent other gases. Trace amounts of carbon dioxide, methane, water vapor, and neon are some of the other gases that make up the remaining 0.1 percent.
Five Different Layers
The atmosphere is divided into five different layers, based on temperature. The layer closest to Earth’s surface is the troposphere, reaching about seven and 15 kilometers (five to 10 miles) from the surface. The troposphere is thickest at the equator, and much thinner at the North and South Poles. The majority of the mass of the entire atmosphere is contained in the troposphere—between approximately 75 and 80 percent. Most of the water vapor in the atmosphere, along with dust and ash particles, are found in the troposphere—explaining why most of Earth’s clouds are located in this layer. Temperatures in the troposphere decrease with altitude.
The stratosphere is the next layer up from Earth’s surface. It reaches from the top of the troposphere, which is called the tropopause, to an altitude of approximately 50 kilometers (30 miles). Temperatures in the stratosphere increase with altitude. A high concentration of ozone, a molecule composed of three atoms of oxygen, makes up the ozone layer of the stratosphere. This ozone absorbs some of the incoming solar radiation, shielding life on Earth from potentially harmful ultraviolet (UV) light, and is responsible for the temperature increase in altitude.
Top Stratosphere
The top of the stratosphere is called the stratopause. Above that is the mesosphere, which reaches as far as about 85 kilometers (53 miles) above Earth’s surface. Temperatures decrease in the mesosphere with altitude. The coldest temperatures in the atmosphere are near the top of the mesosphere—about -90°C (-130°F). The atmosphere is thin here, but still thick enough so that meteors will burn up as they pass through the mesosphere—creating what we see as “shooting stars.” The upper boundary of the mesosphere is called the mesopause.
The thermosphere is located above the mesopause and reaches out to around 600 kilometers (372 miles). Not much is known about the thermosphere except that temperatures increase with altitude. Solar radiation makes the upper regions of the thermosphere very hot, reaching temperatures as high as 2,000°C (3,600°F).
The uppermost layer, that blends with what is considered to be outer space, is the exosphere. The pull of Earth’s gravity is so small here that molecules of gas escape into outer space.
Comments are closed.